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1. INTRODUCTION 

Dispersed second phase p a r t i c l e s  and non-metallic inclusions 

exer t  a ia rge  influence upon t h e  mechanical proper t ies  of materials. 

In addi t ion  t o  increasing the y i e ld  s t rength by r a i s ing  t h e  s t r e s s  

necessary t o  move dis locat ions through the  matrix, the  presence of 

dispersed phases and inclusions a f f e c t s  t he  f r ac tu re  behavior of these 

mater ia l s  by providing s i t e s  f o r  void formation v i a  p a r t i c l e  or 

par t i c l e - in t e r f ace  cracking a t  the  t i p  of a blocked s l i p  band. 

appl ied s t r e s s e s  these  voids grow and coalesce, causing f r ac tu re  a t  

la rge  p l a s t i c  s t r a i n s .  

Under 

Any de ta i led  analysis  of the  mechanical propert ies  of r e a l  

mater ia l s  m u s t  therefore  include a study of t he  in t e rac t ions  between 

s l i p  bands (and cracks)  and hard p a r t i c l e s ,  s ince these in te rac t ions  

play an important r o l e  i n  determining s t rength and d u c t i l i t y .  

f i rs t  approximation t h e  s l i p  band-particle i n t e rac t ion  may be repre- 

sented by a planar a r ray  of d i s loca t ions  which has been blocked by, 

and thus p i l ed  up against ,  the p a r t i c l e  (Figure 1). 

To a 

Before one can inves t iga te  t h e  i n t e r e s t i n g  problems of 

p a r t i c l e  f rac ture ,  pa r t i c l e - in t e r f ace  f r ac tu re ,  or cross-s l ip  of t he  

p i l ed  up d is loca t ions  over the ba r r i e r ,  one must f i rs t  determine the  

s t r e s s  d i s t r ibu t ion  associated with such blocked ar rays  of d i s loca t ions  

as a funct ion of p a r t i c l e  shape, s ize ,  and r i g i d i t y .  An analytical 

treatment of t h i s  problem requires,  i n  turn, t h e  se lec t ion  of an inhomo- 

genei ty  shape which a l lows  a mathematical solut ion t o  be obtained and 
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ABSTRACT 

The method of continuously d i s t r ibu ted  dis locat ions i s  used 

t o  obtain the exact solut ion for the d i s t r i b u t i o n  of screw d is loca t ions  

i n  a l i n e a r  a r r ay  of length L p i led  up against  a c i r cu la r  inclusion 

of radius  R and f i n i t e  shear modulus. The so lu t ion  presented i s  va l id  

f o r  0 < G2/G1 < m, where G2 i s  the  shear modulus of t he  inclusion 

and G1 i s  the  matrix shear modulus. 

The solut ion enables one t o  study simultaneously the e f f e c t s  

of second phase s i ze  and r i g i d i t y  upon N, t he  number of dis locat ions 

i n  the  pileup, and upon the  l o c a l  s t r e s ses  induced i n  the second phase. 

I n  the  second phase close t o  the pi leup t i p  it i s  shown t h a t  the  loca l  

s t r e s ses  vary as: 

(1) (~L/P)~, when the  inclusion diameter i s  much grea te r  than the 

s l i p  l i n e  length 

( 2 )  ,& (:Ig, when the p a r t i c l e  diameter i s  much l e s s  than the 

s l i p  l i n e  length.  

p i s  the  r a d i a l  dis tance from the pi leup t i p ,  and g i s  a funct ion only 

of t he  shear moduli r a t i o ,  G / G  , with 

ing second phase s i ze  and r i g i d i t y  upon the magnitude of the  l o c a l  

0 < g < 1. The e f f e c t s  of vary- 2 1  

s t r e s ses  is  explained i n  terms of image d is loca t ion  forces  generated by 

the presence of the  inhomogeneity ahead of t he  pi leup.  
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i s  a t  the  same time a reasonable physical choice. Having chosen the  

shape, t he  e f f e c t  of t h e  remaining var iables ,  s i z e  and r i g i d i t y  ( e l a s t i c  

constants) ,  can then be examined. 

t h e  present invest igat ion.  

This examination i s  the  subject of 

Previous ana ly t i ca l  treatments of pi leup problems have not 

simultaneously examined second phase s i z e  and r i g i d i t y  e f f e c t s  upon the  

induced s t r e s s  concentrations.  A b r i e f  summary of these  previous t r e a t -  

ments and t h e i r  calculated loca l  s t r e s ses  i s  as follows ( see  a l so  

Figure 1): 

1. A screw o r  edge dis locat ion pi leup i n  an i n f i n i t e ,  homo- 

geneous e l a s t i c  medium (Eshelby, Frank, and Nabarro, (1) 

1951). 

posi t ion by a very short  range d e l t a  function type force .  

A similar problem was a l s o  s tudied by Stroh(2)  i n  1954. 

These problems were analyzed without using the  approximation 

of continuously d is t r ibu ted  d is loca t ions .  (’) 

dislocat ions i n  the  a r r ay  were t r e a t e d  as being d iscre te ,  

and t h e i r  equilibrium posi t ions were found by t h e  t r a n s -  

formation technique o f  S t i e l t j e s .  Close t o  t h e  pi leup t i p  

t h e  l o c a l  s t r e s s e s  a re  of t he  form 

The leading d is loca t ion  w a s  assumed t o  be locked i n  

Instead, t he  

(L >> 1) 
T i j  -78, P 

where T i s  the  applied s t r e s s ,  L t he  pi leup length, and 

p t h e  r a d i a l  distance from t h e  p i leup  t i p .  Thus, t he  l o c a l  

s t r e s s e s  a r e  of the same form as those predicted by continuum 

f rac tu re  mechanics, 
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where K i s  the  s t r e s s  i n t e n s i t y  f a c t o r  associated with a 

crack of length L. 

2. Head") 1953, provided so lu t ions  f o r  s ing le  edge and screw 

dis locat ions i n  a bimetal l ic  medium formed by joining two 

d iss imi la r  e l a s t i c  half-planes.  

3. Chou(5) 1965, using the  s ing le  d is loca t ion  solut ion of Head, ( 4 )  

considered t h e  screw d is loca t ion  p i leup  against  a r i g i d  semi- 

i n f i n i t e  second phase. This problem and the  pi leup problems 

mentioned below were t r ea t ed  by the method of continuously 

d i s t r ibu ted  dis locat ions.  It was l a t e r  shown(8) t h a t  near t he  

pi leup t i p  t h e  loca l  s t r e s s e s  were 

2 L  r - ~ l n -  
xz P 

2L 2 
T - z  ( I n - )  . 

YZ P 

4. Dundurs(') and Dundurs and Mura (7)  

given by 

i n  1965 provided the  

solut ions f o r  single edge and screw dis locat ions i n  a matrix 

containing a c i rcu lar  inclusion.  

5. Using the  s ing le  screw so lu t ion  given by Dundurs, (6) 

Barnett  and Tetelman(8) t r e a t e d  the  screw pi leup against  a 

r i g i d  c i r c u l a r  inclusion of radius R. This represents  t he  

introduct ion of p a r t i c l e  s i z e  as a f r e e  var iable .  Near t h e  

p i leup  t i p  
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2L 
T - ~ l n - ,  
xz P 

(-L << 2) R 

2L 
T - T ( l n - )  , 
Y= P 

(k << 2 )  R 

6. A screw pi leup against  a semi- inf in i te  second phase of f i n i t e  

shear modulus (Barne t t , (9)  1966). 

f i n i t e  inclusion s ize  w a s  relaxed and replaced by t h e  in t ro -  

duction of f i n i t e  r i g i d i t y .  The pi leup was allowed t o  e x i s t  

i n  e i t h e r  the  hard o r  s o f t  phase and the  l o c a l  s t r e s ses  were 

found to be of t he  form 

Here the  condition of 

where g i s  a function of t he  r a t i o  of t h e  shear moduli of 

the  respect ive phases with 0 < g < 1. 

The d i f f e ren t  expressions fo r  l o c a l  s t r e s s  i n t ens i f i ca t ion  a r e  due t o  

image dis locat ion forces  introduced by t h e  presence of t h e  inhomo- 

genei ty .  Inclusion - s i z e  determines the  d i s t r ibu t ion  of these image 

forces ,  whereas inclusion r i g i d i t y  determines t h e  s t rength of t h e  

v i r t u a l  forces .  

The present work u t i l i z e s  t h e  method of continuously d is -  

t r i bu ted  dis locat ions t o  t r e a t  i n  closed form t h e  screw d is loca t ion  

p i leup  a t  a second phase of c i r c u l a r  c ross  sec t ion  and f i n i t e  modulus. 
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This i s  t h e  completely general case of t he  spec ia l  cases depicted i n  

Figure 1 and allows a simultaneous examination of s i ze  and r i g i d i t y  

e f f e c t s .  The s i z e  e f fec t  appears i n  var ia t ions  of t he  parameter 

and t h e  r i g i d i t y  e f f ec t  

where Gg and Gl are 

The method of 

appears i n  var ia t ions  of the  parameter 

G2 - G1 
K =  G 2 + G 1 '  (ii) 

the  shear moduli of t he  respect ive phases. 

continuously d i s t r ibu ted  dis locat ions provides 

a powerful ana ly t i ca l  means o f  t r e a t i n g  pi leup problems i n  inhomo- 

geneous media. Head and Louat (lo) have commented on the  advantages 

of using the  continuous d is t r ibu t ion  approach as compared t o  t h e  d is -  

Crete d is loca t ion  method used by Eshelby, Frank, and Nabarro. (1) 

The basic  procedure used i s  the formulation of t h e  pi leup problem 

from the  corresponding single d is loca t ion  solut ion,  followed by the  

obtaining of the  dis locat ion d i s t r ibu t ion  funct ion.  Once the  d i s t r i -  

bution function i s  known, the s t r e s s  f i e l d  i s  found by in tegra t ing  the  

s ing le  dis locat ion s t r e s s  f i e l d  over t he  d i s t r ibu t ion  of dis locat ions.  

(10) It i s  in t e re s t ing  t o  note tha t  t h e  discrete'') and t h e  d is t r ibu ted  

solut ions f o r  t h e  screw and edge pi leups i n  a homogeneous medium yie ld  

almost i d e n t i c a l  r e s u l t s  f o r  t h e  l o c a l  stress f i e l d .  
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2. FOWLATION OF THE PROBLEM 

Consider the i n f i n i t e  two-phase e l a s t i c  medium depicted i n  

Figure 2. Region 2 i s  a c i rcu lar  cy l ind r i ca l  inclusion of radius R 

and shear modulus G which i s  imbedded i n  a matrix of shear modulus 
2 

. The cyl inder  i s  i n f i n i t e l y  long i n  the  z-direct ion with the  z-axis 
G1 

coinciding with the  cyl inder  axis. Since we s h a l l  formulate a problem 

independent of z, we need only consider the  x-y plane sect ion i n  

Figure 2. The e l a s t i c  s t r e s s  f i e l d  of a s ing le  screw dis locat ion 

located a t  ( t  ’ 0) i n  the  matrix i s  (6). . 
7 

G1b ( 1 i - K )  
2n 2 2 ’  

- - -  - 
( x - t )  + Y 

x - -  
t 

z = Lib(( x - t )  + K - 2  
+ y 

yz 2n 

where 
K =  G2 - G1 

G2 + G1 

b 

Perfect  i n t e r f ace  bonding has been assumed so  t h a t  

i s  the  d is loca t ion  Burgers’ vector,  which i s  p a r a l l e l  t o  t he  z-axis. 

T and the  
r z  
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2 2 2  displacement f i e l d  a r e  continuous across the  c i r c l e  x + y = R . 
With these  boundary conditions t h e  s t r e s s  f i e l d  i n  the  matrix i s  

equivalent t o  the  s t r e s s  f i e l d  i n  an  i n f i n i t e  homogeneous medium of 

shear modulus G1 containing the  r e a l  d i s loca t ion  a t  ( t , O )  and 

two v i r t u a l  o r  image dis locat ions a t  ( R 2 / t ,  0)  and the  or ig in  whose 

Burgers ' vectors  are K b  and -Kb, respect ively (Figure 2 ) .  

The problem of a l i nea r  a r r ay  of length L containing N 

right-hand screw dis locat ions p i l e d  up aga ins t  t h e  inclusion under the  

appl icat ion of an applied shear s t r e s s  T = - T (Figure 3a) may be 

formulated as follows. For s t a t i c  equilibrium t h e  force ac t ing  on any 
;yz 

one d is loca t ion  i n  the  pileup due t o  a l l  the  o ther  pi leup dis locat ions 

must balance the  force due t o  t h e  applied shear.  This requires t h a t  

Equation ( 3 )  represents  N simultaneous equations t o  be solved f o r  t h e  

x Is, t he  equilibrium posi t ions of t he  pi leup dis locat ions.  
i 

Equation ( 3 )  may be re in te rpre ted  i n  terms of image disloca- 

t i o n s  as follows (Figure 3b). Considering an i n f i n i t e  homogeneous medium, 

t h e  f i r s t  sum on the  l e f t  side of ( 3 )  represents  the  stress a t  

due t o  t h e  other  N - 1  d is locat ions i n  the r e a l  pileup; t he  second sum, 

x i 

t h e  s t r e s s  a t  x due t o  a pi leup of N image dis locat ions,  each of 

s t rength  Kb, a t  pos i t ions  ( R  /xj, 0)  

t h e  t h i r d  term, t h e  s t r e s s  a t  due t o  a g i an t  image d is loca t ion  of 

Burgers' vector -KN% a t  the o r ig in .  

i 
2 2 2 2  ins ide  the  c i r c l e  x + y = R ; 

xi 
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When N i s  l a rge  we may invoke t h e  approximation of con- 

t inuously d i s t r ibu ted  d is loca t ions- - i . e . ,  replacing the d i s c r e t e  d is -  

loca t ions  i n  the  a r r ay  by a continuous d i s t r i b u t i o n  of  dislocations-- 

and r ecas t  t h e  equation of s t a t i c  equilibrium as a s ingular  i n t e g r a l  

equation. 

t h e  d i s t r i b u t e d  dis locat ion approximation, equation ( 3 )  becomes 

Defining t h e  dimensionless parameter hi = xi/R and using 

where 
L 
R p = - + l .  ( 5 )  

h i s  a f i e l d  point,  5 a source poin t  anywhere i n  t h e  d i s t r ibu ted  

array,  t h e  f i rs t  i n t e g r a l  on the  l e f t  i s  defined by i t s  Cauchy p r inc ip l e  

value, and f( 5 )  i s  t h e  unknown dis locat ion d i s t r i b u t i o n  function. 

3. SOLUTION OF THE INTEGRAL EQUATION 

We s h a l l  consider the case  of a p i l eup  whose d i s t r ibu t ion  

function becomes i n f i n i t e  a t  t h e  inclusion-pileup in t e r sec t ion .  Hence, 

we seek a so lu t ion  t o  ( 4 )  such t h a t  f (  [ )  i s  unbounded (with a weak 

s i n g u l a r i t y )  a t  = 1. A t  the  t r a i l i n g  end of t he  pi leup ( 5 = f3) 

t h e  d i s t r i b u t i o n  funct ion must vanish. It w i l l  be shown that when 

K = -1 ( t o e . ,  t h e  case i n  which t h e  second phase i s  a c i r c u l a r  ho le )  
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the  d i s t r ibu t ion  function w i l l  vanish a t  both ends of the  array.  

Discussion of t h i s  spec ia l  case w i l l  be deferred u n t i l  l a t e r .  

Knowing the  form of t h e  d i s t r ibu t ion  functions obtained i n  

cases 3, 5, and 6 mentioned i n  t h e  introduction, it i s  possible  t o  

guess t h e  so lu t ion  t o  equation ( 4 ) .  

solut ion fo (c )  of t h e  form 

A s  a f i r s t  t r i a l  l e t  us guess a 

This pa r t i cu la r  form i s  chosen f o r  t he  following reason. The d is t r ibu t ion  

functions found by Chou,(5) Barnett  and Tetelman, ( 8 '  and Barnett (9) were of 

t he  form 

-1 L 
f (  5 )  = a. cosh (1) (Chou: K = 1, B = 1) 

-1 L f (  5 )  = bo sinh{go cosh -1 5 (Barnett :  f3 = 1, -1 < K < - 1) (7b) 

cosh 
1 f (0  = co (1 + -) 
5* 

+ do (1 - -$) sinh {cosh-l [ (e)(E)] p+1 5-1 } 
(Barnett & Tetelman: K = 1, 1 - < p < m )  . 

Thus, t he  forms of equations (7a) and ( T o )  lead one t o  generate the  

t r i a l  function of equatcon ( 6 )  from equation ( 7 c ) .  

A, B, g, and w 

The constants 

i n  ( 6 )  a re  as y e t  undetermined. 
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Making the subst i tut ion 

r 1 

sinh gu sinh u du 2 = 2A ’-’ J 1 [E cosh u - + 1 ] 1’ + [ [ E F o s h 2  u - 11 

1 

W 

-W 

sinh wu sinh u cosh u du 

1 [E cosh u - + 1 1‘ [E cosh u 7 1 

1 I 

B+1 (A-1)  cosh u ( l+h)  
B - 1  

W 

Considering 
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where C i s  t h e  indented rectangle i n  t h e  complex u = v + i R  plane 

(Figure 4), l e t t i n g  

theorem, one f inds  t h a t  i f  we l e t  ( s e e  Appendix) 

vo + m , E + 0, and applying the  Cauchy residue 

2 g = - s i n  n 

2 
w = - s i n  n 

70 ) s i n  g(n - 2R7 B = -  

-JZ s i n  7 0 

0 < 7  - 0 - 2  < E  

then fo( e )  satisfies t h e  i n t e g r a l  equation 

I .  

1 1 

where 

i 



. 

If a. were iden t i ca l ly  zero, then fo( c )  would be a 

This i s  not t h e  case, so w e  must f ind  a solut ion t o  equation ( 4 ) .  

d i s t r ibu t ion  function fl( 5 )  sa t i s fy ing  

where 

Then fo( () + fl( () will be the  required solut ion t o  equation ( 4 ) .  

A su i t ab le  guess f o r  f,(() i s  

f l ( [ )  = sinh {g cosh-’ [ (  B1E - ) (  
) ]  } , 5 p+1 (-1 

Again making the  subs t i tu t ion  u = cosh-l [(E)(E)] and using the  

technique i l l u s t r a t e d  i n  equations (8)  and (9 ) ,  fl( 5 )  i s  a solut ion 

t o  (13) i f  

cos y 
O ( g ~  s i n  gyO - WB s i n  w y 1 . 2 c = -  

s i n  r0 cos gyo 0 

Thus, i n  dimensionless form, t h e  exact d i s t r ibu t ion  function 

i s  



2R.t- 1 1 

0 s i n  7 f ( 5 )  = -  

- 
0 1 - s i n  g(sr-7 ) s inwy 0 

cos 7 2 
s i n  7 cos gyo 0 

where 

- 
70 - 

0 < Y o =  

g =  

The number of d 

cosh 

-1 p l . 5  cos p+1 - 2 

slocat ions i n  t h e  p i leup  i s  hen given as 

The l imi t ing  cases K + 1, 0 and f3 41, 00 check a l l  previous 

so lu t ions  .( 57879J10) 

function i n  dimensional form i s  

One should note t h a t  t h e  t r u e  d i s t r ibu t ion  



14 

Figures 5, 6, and 7 show t h e  t r u e  d i s t r ibu t ion  function 

p lo t t ed  as a function of 5 = p /L ( f o r  f ixed  K and var iab le  p, 

and vice-versa),  where i s  t h e  dis tance from the  leading edge of 

t he  p i leup  t o  any point  i n  the a r ray .  The r e l a t ion  between 5 and 

0 0  

5 = 1 + (B-1) to 

Figure 8 i s  a three-dimensional view of t h e  surface 

function of inclusion s i z e  ( B )  and r i g i d i t y  ( K ) .  1 / N  has been 

p lo t t ed  r a the r  than N f o r  two reasons: 

TL/GlbN as a 

(1) Previous treatments ( 5 9 9 )  have e lec ted  t o  p l o t  1 / N  versus K 

( f o r  

when 0 < K < 1. 

p = 1) because of t h e  very l i n e a r  r e l a t ion  obtained 

- -  

( 2 )  When K < 0 and K + -1, N becomes la rge .  By p l o t t i n g  

1 /N,  the  e n t i r e  r i g i d i t y  range 

more eas i ly .  

-1 < K < 1 may be depicted - 

A s  p a r t i c l e  s i z e  decreases ( i . e . ,  as @ becomes la rge) ,  t h e  

TL/GlbN surface approaches the plane TL/GlbN = l/x , independent 

of t he  value of K. Figures 9 and 10 represent sec t ions  through the  

surface a t  constant 8 and a t  constant K. 



4. THE PILEUP STIiESS FIELD 

The stress f i e l d  of t h e  p i l e d  up array i s  found by in t eg ra t ing  

t h e  stress f i e l d  of a s ing le  dis locat ion (equation (1)) over the  d i s t r i -  

bution, i . e . ,  

Th i n t  g a l s  a r e  omewhat involved, but they may ,e evaluated by an 

in t eg ra t ion  i n  t h e  complex plane. (8,9) Expressions f o r  spec ia l  cases 

of t h e  stress f i e l d  are presented below: 

(a )  The shear stress 7 along t h e  inclusion in t e r f ace :  r z  -- -- 

T 
T =  

0 r z  s i n  y 

+ s i n  g(fi-y ) s i n  @[cash wv - COS w ( 2  fi - yo)]  0 0 

- 
0 3 - s i n  g(fi-y 0 ) s i n  wy 

cos 7 

0 s i n  y cos gyo 

x sinhgv ( 2 0 )  

where 

vo = s inh  
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and 8 

(Figure 3a). 

i s  t h e  polar  angle measured from the  center  of t h e  inclusion 

on the  s l i p  plane j r  = 0 i n s ide  the  - ( b )  The shear stress T~~ 

inc  l u s i  on : 

When - < A = - < l ,  1 X 

B -  R -  

7 z =  
0 

yz '(1-~) s i n  7 

K 

x ((1 + 3) s i n  7 0 

where 

1 2 cos y 

0 
+ 0 [ g J G  s i n  yo- s i n  g(n-7 ) s i n  y y  

0 0 h COS gyo s i n  7 

1 X cosh gq 

r - j s i n  w(n-7 )(1 + -) 1 cosh gql 
0 A2 

x 1  
For 

cash wql replaced by cos gq,, and cos wq , respectively,  where 

-1 C A = - < - , the  same equation i s  va l id  with cosh gvl and 
R -  B - 

1- 2 

Figure 11 shows a three  dimensional view of t h i s  s t r e s s  near 

t he  pi leup t i p  as a function of  p/L = ( l - A ) / ( p - l )  (see Figure 3a) 



. 

and inclusion s i z e  p. Each of t h e  th ree  stress surfaces shown corre- 

sponds t o  a d i f f e r e n t  value of inclusion r i g i d i t y  ( K ) .  

shows a sec t ion  taken through Figure 11 a t  constant 

Figure 12 

f3. 

( e )  me shear s t r e s s  on the  s l i p  plane y = 0 outside the  - YZ ---- -- 
inclusion ( A  = - X < -1): 

R -  

where 

x {  JE7 s i n  yo 
L 

I O [ F  0 0 0 
g 1 - K  s i n  y - s i n  g(n-7 ) s i n  wy 

cos 7 2 
A cos gyO s i n  y 

+ -  
0 

0 

1 

X s i n  ga 

- [(1 + --> s i n  w(n-7  ) s i n  go 
0 h2 0 

1 
h 

+ (1 - 2) s i n  g(n-rO) s i n  wu (25)  
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5. D I S C U S S I O N  

One readi ly  notes t h a t  the  expressions f o r  t h e  s p e c i a l  

s t r e s s e s  given i n  equations ( 2 0 ) ,  ( 2 2 ) ,  and (26) a r e  extremely c-mber . 

some, and it i s  useful t o  have approximate expressions f o r  the  stress 

f i e l d  i n  t h e  second phase close t o  t h e  pileup t i p  

K f + 1 

(L/p  >> 1). For 

these l o c a l  s t resses  a r e  found t o  be: - 

where 

( 2 8 )  
0 s i n  w(x-7 s i n  wy + w J Z 7  cos yo s i n  7 0 0 

( 1-K) sin 7 COS grO 
A(K,B) = 

0 

(8 is  t h e  polar  angle i n  the second phase r e l a t i v e  t o  the pileup t i p ,  

and p i s  the  associated radius vector (Figure 3a). As K + 1, t h e  

(5,899) s t r e s s e s  near t h e  pileup t i p  diverge logarithmically.  

Now l e t  us examine equation ( 2 7 )  for cases i n  which the 

p a r t i c l e  diameter 2R i s  much grea te r  and much l e s s  than t h e  s l i p  

l i n e  length L.  Since 

L . -  4R - - -  - 4 L  
B+1 p L + 2R p ’ 



4 L 2L 
PI- - 

B+1 P P 

and 

L when << 2 

L when - >> 2 . R 

Hence, when L/p >> 1 and K # + 1 - 

or  

where 

2 0 < g = - s i n  
If ( 3 3 )  

One notes t h a t  

( a )  The exponent g i s  independent of p a r t i c l e  s i z e  and depends 

only upon the r a t i o  G2/G1. 

I n  the  case of pa r t i c l e s  which a r e  la rge  r e l a t i v e  t o  the  s l i p  (b) 

l i n e  length,  pa r t i c l e  s i z e  a f f e c t s  s t r e s s e s  only through the  

constant A(K,B).  The relevant  term i n  the expression for 

l o c a l  s t r e s s  in tens i f ica t ion  is  ( ~ L / P ) ~ ,  and t h i s  i s  the  
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same term which would appear if the second phase were semi- 

i n f i n i t e .  This i s  physical ly  reasonable s ince when L/R << 2, 

t he  second phase i s  extremely planar near the p i leup  t i p  and 

t h e  leading dis lccat lons i n  t,he pi leup do not sense the f i n i t e  

s i ze  of the  inclusion. 

I n  the case of pa r t i c l e s  which are small r e l a t i v e  t o  the s l i p  

l i n e  length,  the relevant term i n  the  expression f o r  the l o c a l  

( c )  

. The f a c t o r  e i s  the same 4R g-1/2 s t r e s ses  i s  4 (7) 
term which appears i n  the  calculat ions based upon a homogeneous 

medium (no pa r t i c l e  present ) ,  so t h a t  the term 

be viewed a s  a correction term introduced by the  f i n i t e  s i ze  

4R g-l/2 
(--> 

P 

and r i g i d i t y  of the second phase. 

W e  can use equations (31) and (32) t o  i l l u s t r a t e  s i ze  and 

r i g i d i t y  e f f e c t s  upon the l o c a l  s t r e s ses  by two sample ca lcu la t ions  

which will be compared with s i m i l a r  ca lcu la t ions  assuming t h e  absence 

of t h e  inclusion.  

plane occurs upon t h e  s l i p  plane 

w i t h  t he  s t r e s s  zyz I y=o near the  pi leup t i p  ins ide  t h e  second phase. 

Since the  maximum shear s t r e s s  ac t ing  along any 

y = 0, we shall  concern ourselves 

-4 -4 
Case 1: L - - 10 cm, R - - 2 x 10 c m  ( a  typ ica l  cermet) -- 

G2 2 
( i )  - = 5, K = - 

G, 3 
A 

( i i )  K = o (no inclusion)  
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Thus, when K > 0, the loca l  s t r e s s e s  i n  la rge  p a r t i c l e s  

may be lower than those predicted by homogeneous e l a s t i c i t y  

by a f ac to r  of 2 or 3 when p > l O A .  This i s  e s s e n t i a l l y  
0 

- 
a r i g i d i t y  e f f e c t ,  s ince R, the  p a r t i c l e  s ize ,  has l i t t l e  

e f f e c t  upon the l o c a l  s t r e s ses  when L/R << 2. We s h a l l  

not consider K < 0 in t h i s  ca lcu la t ion ,  because i f  G < G1, 

s l i p  should occur inside the p a r t i c l e  before the  matrix y i e lds .  

2 

-6 Case 2: L > = 10-5 cm, R < 5 x 10 cm. - - 
The e s s e n t i a l  difference between the  l o c a l  s t r e s s  f i e l d  i n  the  

p a r t i c l e  and t h a t  i n  a homogeneous medium i s  given by the 

correct ion f a c t o r  (hR/p)"'/* i n  equation (32). This cor rec t ion  

f ac to r  i s  p lo t t ed  i n  Figure 13 f o r  two d i f f e r e n t  s i z e  p a r t i c l e s  

and two d i f f e ren t  r e l a t ive  r i g i d i t i e s .  The correct ion f a c t o r  

becomes appreciable a t  distances p from the pi leup t i p  which 

are  l e s s  than 1OA. However, it i s  doubtful that much physical  
0 

signif icance can be attached t o  t h i s  range of p values.  A t  

d is tances  from the pileup t i p  which a re  physical ly  s ign i f i can t  

( p  _> 25A), when 

about 1 /2  t o  1/3, so t h a t  the  l o c a l  s t r e s s e s  i n  the p a r t i c l e  a re  

0 

K > 0, the correct ion f ac to r  may vary from 

about 2 or 3 times lower than those predicted by homogeneous 

e l a s t i c i t y  theory.  This may prove s ign i f i can t  when one begins t o  

examine re laxa t ion  of the  high l o c a l  s t r e s s e s  by e i t h e r  p a r t i c l e  

or  p a r t i c l e  in te r face  f rac ture ,  cross s l i p  of the  blocked d i s -  

loca t ions  around the pa r t i c l e ,  o r  induced s l i p  i n  the  matrix.  
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These e f f e c t s  upon the  l o c a l  s t r e s ses  near t h e  pi leup t i p  may be e a s i l y  

understood by using the  concept of image d is loca t ion  forces .  When 

K > 9, decreasing the  particle s i z e  e f f ec t ive ly  decreases the  repuls ive 

image forces  near t he  p i leup  t i p  by allowing thegian t image  dis locat ion 

a t  t h e  o r ig in  (Figure 3b) t o  p a r t i a l l y  cancel out  the  e f f e c t  of t he  

image pi leup.  Thus, t h e  d i s t r ibu t ion  of d i s lcca t ions  near the pi leup 

t i p  i s  increased, and l o c a l  s t r e s ses  i n  the  second phase a r e  increased 

as p a r t i c l e  s i z e  decreases.  When K < 0, decreasing the  p a r t i c l e  s i z e  

decreases t h e  a t t r a c t i v e  image forces  near t h e  pi leup t i p ,  and the  

same reasoning allows us t o  conclude t h a t  l o c a l  s t r e s ses  i n  the  second 

phase should decrease with decreasing p a r t i c l e  s i z e .  These conclusions 

a r e  borne out i n  Figure 11. 

i n  the  same fashion. 

as t h e  second phase r i g i d i t y  increases .  An increase i n  K 

The e f f e c t  of r i g i d i t y  ( K )  i s  explained 

Local s t r e s ses  i n  t h e  second phase always decrease 

(1) increases  t h e  repulsive image forces  nearest  t he  pileup 

t i p  when K > 0 

decreases t h e  a t t r a c t i v e  image forces  nearest  t h e  pi leup 

t i p  when K < 0 .  

( 2 )  

In  both cases t h e  net  e f f ec t  of an increase i n  r i g i d i t y  i s  t o  decrease 

t h e  d i s t r ibu t ion  of p i leup  dis locat ions near  t h e  second phase and hence 

lower the  l o c a l  s t r e s s  f i e l d  i n  the  inclusion.  

Figures 8, 9, and 10 ind ica t e  t h a t  t h e  e f f e c t  of p a r t i c l e  

s i z e  upon N, t h e  number of dis locat ions i n  the  pileup, i s  s m a l l ,  a t  

l e a s t  when K > 0. Neither changes i n  p nor K can change N by 

more than 50% when K > 0 ,  
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When K = -1 t h e  second phase becomes a c i r c u l a r  hole.  

Using 

P a c t i o n  f o r  the hole becomes 

L’Hospital’s r u l e  i n  equation (16), t he  t r u e  d i s t r ibu t ion  

This d i s t r ibu t ion  i s  depicted i n  Figure 1 4  f o r  d i f f e ren t  

and one notes t h a t  f o r  t h e  hole t h e  d i s t r i b u t i o n  function i s  bounded at 

both ends of t h e  a r ray .  A s  B + 1 (i .e., R + m and t h e  in t e r f ace  

becomes a f r e e  planar surface)  t h e  d i s t r ibu t ion  function becomes zero. 

In  r e a l i t y  the  i n t e g r a l  equation ( 4 )  does not have a n  admissible 

solut ion i n  t h i s  case.  

L/R r a t i o s ,  

( 9 )  

The shear s t r e s s  on the  s l i p  plane y = 0 outs ide t h e  hole 

( A  = X/R - < -1) i s  

where 

i n  Figure 1 5 .  

i s  as defined i n  equation ( 2 7 ) .  This s t r e s s  i s  depicted 

The i n a b i l i t y  t o  obtain a so lu t ion  t o  equation (4 )  ( f o r  

K = -1) which i s  unbounded a t  5 = 1 with a weak s ingu la r i ty  is  

present ly  unexplained. Perhaps t h i s  i s  due t o  the  f a c t  t h a t  t h e  
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condition f o r  pi leup formation i s  t h a t  t he  leading d is loca t ion  be 

locked i n  pos i t ion  by a force s t rong enough t o  keep i t  from penetrat ing 

the  second phase. 

t o  neglect  t h i s  force i n  t h e  i n t e g r a l  equation of  s t a t i c  equilibrium-- 

The present and previous treatments have been ab le  

i . e . ,  t he  locked d is loca t ion  was "smeared out'' along with t h e  t r a i l i n g  

d is loca t ions  i n  t h e  array--and s t i l l  obtain a so lu t ion .  However, i n  

t h e  case of a hole,  t h e  a t t r a c t i v e  image forces  exerted by t h e  f r e e  

surface a r e  a t  t h e i r  strongest (as compared t o  K f -l), and it is  

possible  that one m u s t  include t h e  locking force  on t h e  leading d i s -  

locat ion i n  equation ( 4 )  i n  order t o  obtain a solut ion.  

The problem which has been t r e a t e d  i n  the  present paper 

i l l u s t r a t e s  t he  d i f f i c u l t y  involved i n  t r e a t i n g  s t r e s s  concentrations 

i n  inhomogeneous m e d i a ,  even f o r  r a the r  simple second phase geometries. 

The only a l t e r n a t i v e  treatments available a t  present seem t o  be 

(11) (1) The conformal mapping technique o f  Webster and Johnson 

and Johnson. (12) 

( 2 )  The standard boundary value problem approach of e l a s t i c i t y - -  

i .e., t h e  p a r t i a l  d i f f e r e n t i a l  equation approach. 

Unfortunately, both a l t e rna t ives  m u s t  consider t h e  boundary conditions 

a t  t h e  second phase in te r face  which w i l l  usual ly  be of t he  "d ie l ec t r i c "  

var ie ty- - ie . ,  cont inui ty  of t he  displacement f i e l d  and combinations of 

i t s  der iva t ives  across  the  boundary. Problems of t h i s  type do not 

lend themselves e a s i l y  t o  solut ion by conformal mapping, and i t  is  

possible  t h a t  e i t h e r  a l t e rna t ive  approach will require  solut ion of an  

i n t e g r a l  equation o r  possibly dual  i n t e g r a l  equations. 
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The beauty of t he  continuously d i s t r ibu ted  approach i s  t h a t  

t he  boundary conditions f o r  the d i s t r ibu ted  a r r ay  w i l l  be s a t i s f i e d  

automatically provided the  solution f o r  a s ing le  d is loca t ion  sa t i s fy ing  

boundary conditions i s  known. In  the  case of screw dis locat ions i n  

inhomogeneous media t h e  close analogy with two-dimensional e lectro-  

s t a t i c  charges i n  media of d i f fe r ing  d i e l e c t r i c  constants may of ten 

allow t h e  s ingle  dis locat ion so lu t ion  t o  be found r a the r  eas i ly .  

n r e e  l imi ta t ions  o f  t h e  approach a re :  

P l a s t i c  re laxat ion by s l i p  i n  the  matrix o r  i n  the  second 

phase has not  been allowed during pi leup formation. S t r e s s  

(1) 

re laxat ion can, however, be considered once the  pi leup has 

formed and t h e  local s t r e s s e s  a r e  known. 

The case of a broadened s l i p  band containing more than one (2) 

l i n e a r  a r r a y  cannot be t r e a t e d  exact ly ,  except f o r  the  case 

of an i n f i n i t e  sequence of screw ar rays  stacked on parallel 

s l i p  planes and pi led up against  a semi- inf ini te  second phase 

(13)  of f i n i t e  r ig id i ty .  

( 3 )  A t  present problems involving edge d is loca t ion  pi leups cannot 

be t r e a t e d  because t h e  s ing le  edge solut ions,  (4,7) even f o r  

simple second phase geometries, are too complex i n  the  e l a s t i c  

constants.  Because t h e  s t r a i n  f i e l d  of t he  edge has a n  

associated d i la ta t ion ,  Poisson's r a t i o  e f f e c t s  a r e  encountered, 

and image edge dipoles and quadrupoles a r e  needed t o  s a t i s f y  

boundary conditions. 

t h i s  case becomes a s ingu la r  i n t eg ro -d i f f e ren t i a l  equation 

The p i leup  equilibrium condition i n  
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which has not been solved. A preliminary investigation (13)  

indicates that the distribution function obtained for the 

screw pileup at a semi-infinite second phase(9) may suffice 

for the corresponding edge array problem for certain values 

of the respective elastic constants of the two phases. 

It is also worth noting that although the present work and the previously 

mentioned treatmects have examined pileups blocked at the inclusion, the 

same techniques should prove successful in treating the case in which a 

linear dislocation array approaches a second phase but is separated 

from the inhomogeneity by a finite distance. 

- 
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Function. 
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APPENDIX 

Consider d; I (u,h) du, where I- (u,A) i s  defined by equation (8) 

i n  the  tex t ,  and C is t h e  indented rectangle  i n  the  complex u = v+iR 

1 I C 

plane (Figure 4) .  

theorem, and choose 

If we l e t  v + 00, E 3 0, apply the  Cauchy residue 0 

then 

m m 

I1(u,h) du = f I1(U,h) du + K 12(u,h) du 
C -m -00 

= 211i ( res idues of I1(u,A) a t  the  poles 

contained in s ide  C )  , (A3 1 

where I (u,A) i s  defined by equation (8) i n  t he  t e x t .  Evaluating 

t h e  residues of t h e  integrand, equations (A2) and (A3) a r e  equivalent t o  

2 

A s i n  g(x-yo) - B s i n  w(x-7 ) 
= {a[n s i n  go + B s i n  yo] + O ? l  

A2 

where 



-1 B-1~ E 0 ,< r0 = cos B+l- 2 ’ 

and fo( () is 6efined by eqmt,ion (6 )  i n  the t e x t .  

By comparing equation (Ab) with equation (4)  i n  t h e  text, we then 

require  

A s i n  g(71-7~) - B s i n  w(x-7 ) = 0 , 
0 

so  tha t  A and B are given by equation (10) i n  t h e  t e x t .  

mus, fo( 5 ; )  i s  a solution t o  

where 

and 



h 

Since a # 0, the  total d i s t r ibu t ion  function m u s t  be given by 
0 

f ( c )  + f ( c ) ,  where f i t )  i s  a so lu t ion  t o  
0 1 1 

where 

Choosing fl( ( )  

technique described above, t h e  exact solut ion 

i s  found t o  be given by equation (16) i n  t h e  t e x t .  

t o  be given by equation (14) i n  t h e  t e x t  and using the 

f( 5 )  = fo( [ )  + fl( 0, 
One should note 

t h a t  equation ( A l )  i s  equivalent t o  


